Egy $ 2024 $ oldalú szabályos sokszög csúcsait valamelyiktől kezdve sorban egymás után megbetűzzük, jelölje őket $ A_1 , A_2, A_3 ,\ \ldots\ , A_{2024} $ , így $ A_1 $ és $ A_{2024} $ szomszédosak. Legyen $ A_1 A_2 = a $, $ A_1 A_3 = b $ és $ A_1 A_{1012} = c $. Igazoljuk, hogy
$ \dfrac{1}{a^2}+ \dfrac{1}{c^2}=\dfrac{4}{b^2} $
 
Megoldás:
Igaz az állítás