Egy $ 6 \times 6 $-os tábla mindegyik mezőjét a piros, kék és zöld színek valamelyikével kiszíneztük. Két mezőt fánkszomszédosnak nevezünk, ha van közös oldalélük, vagy pedig egy sor vagy oszlop két átellenes végén helyezkednek el. A mezőkre egy-egy számot írunk az alábbi szabályok szerint:
- Ha a mező piros, akkor a felírt számot úgy kapjuk, hogy összeadjuk a mező kék fánkszomszédjai darabszámának kétszeresét és a mező zöld fánkszomszédjai darabszámának háromszorosát.
- Ha a mező kék, akkor a felírt számot úgy kapjuk, hogy összeadjuk a mező zöld fánkszomszédjai darabszámának kétszeresét és a mező piros fánkszomszédjai darabszámának háromszorosát.
- Ha a mező zöld, akkor a felírt számot úgy kapjuk, hogy összeadjuk a mező piros fánkszomszédjai darabszámának kétszeresét és a mező kék fánkszomszédjai darabszámának háromszorosát.
Mi a táblára felírt számok összegének lehetséges maximuma?
 
Megoldás:
$ 360 $